

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ИНСТИТУТ ТЕХНОЛОГИЙ (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» В Г. ВОЛГОДОНСКЕ РОСТОВСКОЙ ОБЛАСТИ

(Институт технологий (филиал) ДГТУ в г. Волгодонске)

Методические указания по практическим работам по дисциплине

«Системы автоматизированного проектирования технологических процессов» для обучающихся по направлению подготовки

15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

профиль Технология машиностроения

2021 года набора

Лист согласования

Методические указания по практическим работам по дисциплине «Системы автоматизированного проектирования технологических процессов» составлены в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

Рассмотрены и одобрены на заседании кафедры «*TCuUT*» протокол № 13 от «01» июля 2021 г

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
Работа №1. Создание модели зубчатой шестерни раздаточного редуктора	5
Работа № 2. Создание моделей деталей раздаточного редуктора с исполь-	0
зованием вариационной параметризации	9
Работа № 3. Создание модели сборки узла приводной шестерни раздаточ-	1.4
ного редуктора	14
Работа № 4. Создание спецификации, связанной с моделью сборочного	1.5
изделия, в полуавтоматическом режиме	17

ВВЕДЕНИЕ

Создание технологического оборудования — многостадийный процесс, включающий этапы выбора лучшего конструктивного решения, выполнения рабочего проекта и разработки конструкторской документации.

Для повышения качества и эффективности деятельности конструкторов и целесообразно проектировщиков на ЭТИХ этапах использовать системы автоматизированного проектирования, которые тозволяют выполнить компьютерное моделирование создаваемого оборудования, рассмотреть различные варианты его исполнения, исключить ошибки при оформлении документации и т.д.

Методические указания содержат 4 работы, целью которых является получение студентами практических навыков создания моделей элементов оборудования с использованием возможностей системы автоматизированного проектирования КОМПАС, а именно: вариационной параметризации трехмерных объектов, комбинированного способа сборки и полуавтоматического режима создания спецификаций, которые отражают современные приемы проектирования. Полученные навыки могут быть применены в дальнейшей профессиональной деятельности при разработке технологического оборудования.

Работа № 1

Создание модели зубчатой шестерни раздаточного редуктора рабочего рольганга

Задание. В приводе рабочего рольганга установлен раздаточный редуктор, на приводном валу которого установлена цилиндрическая зубчатая шестерня (рис.1). Необходимо создать трехмерную модель шестерни с использованием технологии вычерчивания профиля зуба.

Рис.1

Исходные данные для построения модели:

- 3. Модуль зацепления m = 10 мм.
- 4. Число зубьев z = 20.

Ход работы

- 1. Нажмите на кнопку **Новая деталь** на Панели управления для создания нового файла модели детали.
- 2. В Дереве построения переименуйте элемент Деталь в Шестерня.
- 3. Сохраните файл детали в своей папке с именем Шестерня.т3d.
- 4. В Дереве построения выберите *плоскость ZX*.
- 5. Нажмите на кнопку **Новый эскиз** и изобразите эскиз для формирования заготовки под шестерню в виде *окружности* с центром в начале координат и диаметром равным диаметру вершин зубьев, который определяется для прямозубых колес по формуле:

 $d_a=m(z+2)$.

Для этого в поле параметра **Диаметр** введите выражение: **10*(20+2)** и нажмите **Enter**.

- 6. Нажмите на кнопку Закончить эскиз
- 7. С помощью команды **Операция выдавливания** выдавите полученный контур на расстояние **60 мм** при включенной опции **Средняя плоскость**.

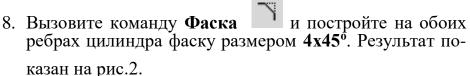


Рис.2

- 9. В Дереве построения выберите плоскость ZX.
- 10. Нажмите на кнопку **Новый эскиз** (в этом эскизе будет построен контур впадины между зубьями).
- 11. Постройте четыре окружности (стиль линии **вспомогательный**) с центром в начале координат и следующими диаметрами:
 - окружность выступов $d_a = m^*(z+2);$

делительная окружность

основная окружность

окружность впадин

d = m*z;

 $d_b = d*\cos 20^\circ$;

 $d_f = m*(z-2.5).$

<u>Примечание.</u> При этом, аналогично п.5, при задании диаметра окружностей каждый раз в поле **Диаметр** вводите необходимое выражение. Для написания выражения $\cos 20^{\circ}$ используйте $\cos (20)$.

- 12. Через начало координат проведите вертикальную вспомогательную линию.
- 13. Увеличьте изображение (в несколько раз) и расположите в центре экрана верхнюю часть построенного изображения.
- 14.Отметьте точкой (команда

Точка точку пересечения делительной окружности и вертикальной линии (точка 1, см. рис.3).

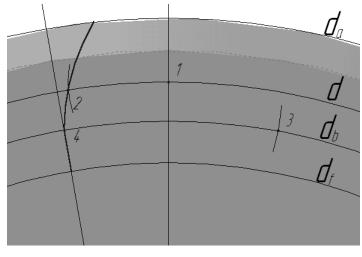


Рис.3

15. Вызовите команду Дуга и постройте дугу с центром в отмеченной точке пересечения и радиусом равным толщине зуба

 $s=0.5\pi m$

т.е. в поле **Радиус** необходимо ввести выражение **0,5*3,1415926*10** и нажать **Enter**.

Первую и вторую точки дуги задайте произвольно так, чтобы она пересекла <u>делительную окружность</u> d. Отметьте эту точку пересечения (точка 2, см. рис.3).

- 16.Из отмеченной точки постройте дугу радиусом **R=d/6** так, чтобы она пересекла <u>основную окружность</u>. Точку пересечения отметьте (точка 3, см. рис.3).
- 17.Из этой точки проведите дугу (стиль линии $\underline{\text{основная}}$) радиусом \mathbf{R} , которая должна пересечь окружность выступов и основную окружность. Отметьте точку пересечения дуги с основной окружностью (точка 4).
- 18.С помощью команды **Усечь кривую** удалите участки дуги, выходящие за пределы окружности выступов и основной окружности.
- 19. Проведите вспомогательную прямую через точку 4 и начало координат. По этой прямой изобразите отрезок (стиль линии основная) от основной окружности до окружности впадин (это будет линия ножки зуба). Изображение должно быть таким же, как на рис. 3.
- 20. Постройте дугу (стиль линии **вспомогательная**) с центром в точке 1 и радиусом равным **0,75*πm** (в поле **Радиус** самостоятельно введите необходимое выражение) так, чтобы она пересекла делительную окружность. Отметьте эту точку пересечения (точка 5, см. рис. 4).
- 20. Проведите вспомогательную прямую через точку 5 и начало координат (см.

рис. 4).

21.Выделите дугу и отрезок, изображенные основной линией (используйте команду Вы-

делить по стилю кривой со страницы Инструменталь-

ной панели Выделение

22. Вызовите команду Симмет-(страница Инструрия ментальной панели Редакти-

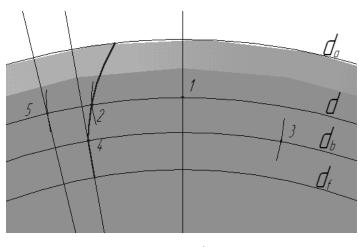


Рис..4

). В качестве лирование 🛂 нии симметрии укажите последнюю проведенную вспомогательную прямую (через точку 5). Результат операции приведен на рис. 5.

- 23. Проведите дуги с помощью команды Дуга по 3 точкам (стиль линии - основная) через точки А, В и С, а затем – D, Е и F.
- 24. Удалите вспомогательные кривые и точки. В результате в эскизе останется контур впадины между зубьями шестерни.
- 25. Вызовите команду Скругление

и выполните сопряжение линий профиля ножки с окружностью впадин радиусом равным 0.2*m (рис. 6).

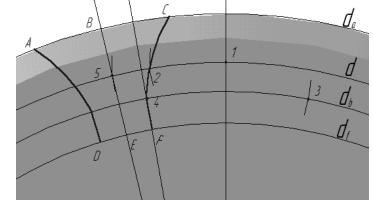


Рис.5

- 26. Нажмите на кнопку Закончить эскиз
- 27. Нажмите на кнопку Показать все

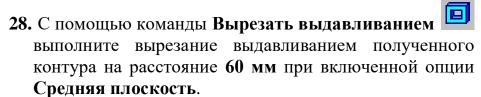


Рис.6

29. Перейдите на страницу Инструментальной панели

и вызовите команду Ось конической Вспомогательные построения . Щелкните курсором «мыши» на цилиндрической поверхности детали для создания оси шестерни.

30. Перейдите на страницу Построение детали , вызовите команду Массив

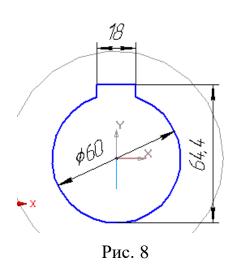
по концентрической сетке . В Дереве построения выделите строки Вырезать элемент выдавливания: 1 и Ось конической поверхности: 1, а в окне диалога в разделе Кольцевое направление в поле Количество введите 20, нажмите кнопку Создать — на модели будут выполнены зубья.

- 31. В Дереве построения выберите плоскость ZX.
- 32. Нажмите на кнопку **Новый эскиз** и изобразите эскиз для формирования ступицы шестерни окружность с центром в начале координат и диаметром, вычисляемым по формуле

 d_{cr} =1,5 d_{B} + 10, где d_{B} – диаметр вала.

Приняв $d_B = 60$ мм, самостоятельно введите необходимое выражение в поле Диаметр.

- 33. Закончите эскиз.
- 34. С помощью команды Приклеить выдавливани-


ем выдавите полученный эскиз на расстояние равное $1,5*d_B$ (это длина ступицы) при включенной опции Средняя плоскость. Результат операции приведен на рис. 7.

- 35. В Дереве построения выберите плоскость ZX.
- 36. Нажмите на кнопку **Новый эскиз** и изобразите эскиз в соответствии со схемой (рис.8).

Рис.7

- 37. Закончите эскиз.
- 38. С помощью команды **Вырезать выдавливанием** выполните вырезание эскиза на такое же расстояние и при той же включенной опции, как и в п.34.
- 39. Выполните скругления и фаски в соответствии с рис. 9.
- 40. Сохраните созданную модель шестерни.

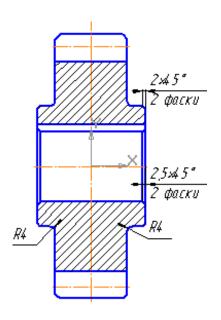


Рис. 9

Работа № 2 Создание моделей деталей раздаточного редуктора с использованием вариационной параметризации

<u>Задание 1</u>. Необходимо создать трехмерную модель приводного вала цилиндрической зубчатой шестерни с использованием вариационной параметризации (рис. 1).

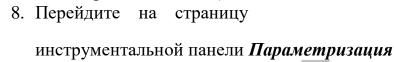

<u>Исходные данные</u>: 1) диаметр участка вала для установки шестерни – 60 мм; 2) длина участка вала для установки шестерни – 98 мм.

Рис. 1

Ход работы

- 1. Нажмите на кнопку **Новая деталь** на Панели управления для создания нового файла модели детали.
- 2. В Дереве построения переименуйте элемент Деталь в Вал приводной.
- 3. Сохраните файл детали в своей папке с именем *Вал приводной.m3d*.
- 4. В Дереве построения выберите *плоскость ZY*.
- 5. Нажмите на кнопку Новый эскиз Для изображения эскиза.
- 6. Вызовите команду **Непрерывный ввод** и произвольно изобразите разомкнутый контур согласно рис.2.
- 7. На странице панели инструментов Технологические обозначения вызовите команду Осевая линия и изобразите ось (не стараясь выдержать горизонтальность).

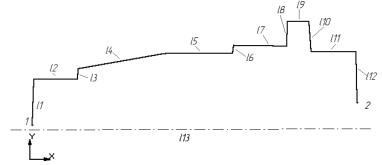
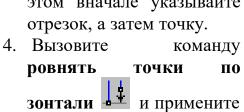



Рис. 2

- 9. Вызовите команду **Горизонталь** и установите это отношение для отрезков *12*, *15*, *17*, *19*, *111* и *113* (см. рис.2).
- 10.Вызовите команду Вертикаль и установите это отношение для отрезков

- *l1*, *l3*, *l6*, *l8*, *l10* и *l12* (см. рис.2).
- 3. Вызовите команду **Точка** на кривой и примените ее к точкам 1 и 2 и осевому отрезку *l13*. При этом вначале указывайте отрезок, а затем точку.

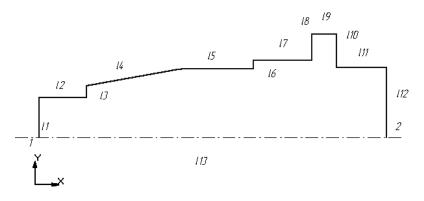


Рис. 3

ее к любым точкам отрезков *l5* и *l11*. Результат наложения перечисленных отношений и связей приведен на рис. 3.

- 5. Вызовите команду **Зафиксировать точку** и зафиксируйте точку **2** (см. рис. 3).
- 6. Перейдите на страницу *Размеры* Инструментальной панели.
- 7. Расставьте линейные размеры для длин и радиусов участков вала (см. рис. 4). При этом в окне диалога задавайте имя переменной, которая будет связана с размером (рис.5).

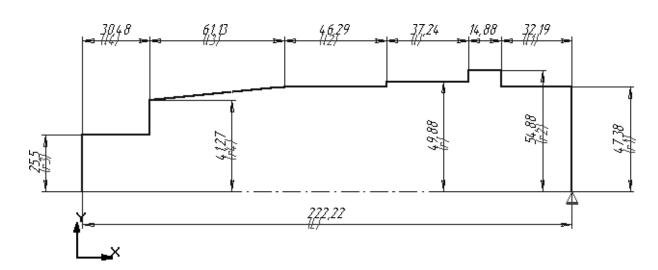


Рис. 4

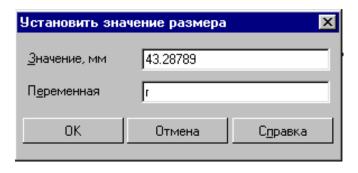


Рис. 5

8. овите команду Переменf(x)ные В окне Переменные В поле Выражение введите следующие выражения ДЛЯ связи переменных (рис.6):

r1=r-2.5 (диаметр ступени мень-

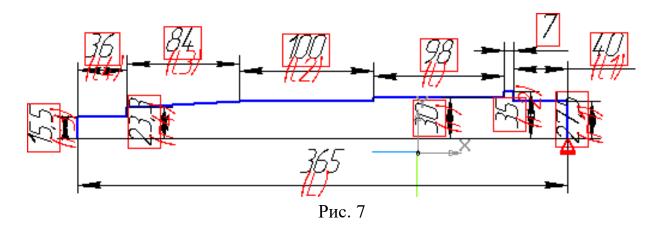
ше на 5 мм, чем базовый диаметр под шестерней)

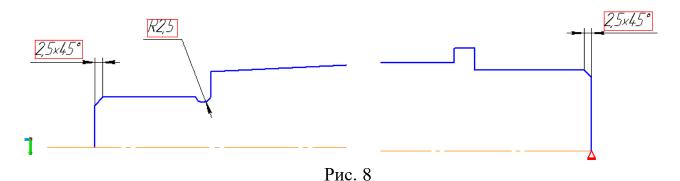
r2=r+5 (диаметр буртика больше базового диаметра на 10 мм)

r3=ceil(r+1)/2 (диаметр конечного участка вала)

r4=r1-l3/20 (меньший диаметр конусного участка при конусности 1:10).

Закройте окно Переменные.


Переменные				т×
T × f≈ π	† (a)	F% 🖪 🎹 🔣	?	
Имя	Выражение	Значение	Параметр	Комментарий 🔺
🛨 Начало ко	ординат			
🖵 Эскиз:1				
v8		0.0	Исключит	
r4	r1-l3/20	33.1841		
r1	r-2.5	34.4449		
r2	r+5	41.9449		
r	36.9449	36.9449		
I3	25.2161	25.2161		
l2		28.0		
l1		11.9613		
····· I		23.0		
r3	ceil(r+1)/2	19.0		Ţ
1				


Рис. 6

9. Перейдите на страницу инструментальной панели *Параметризация*

- 10. Вызовите команду **Установить значение размера** и укажите на размер, обозначенный переменной r (это и есть участок для расположения шестерни). В появившемся окне задайте значение переменной равное **30** мм. Удостоверьтесь, что радиальные размеры автоматически изменились по введенным уравнениям.
- 11. Снова вызовите команду **Установить значение размера** и укажите на размер, обозначенный переменной l. В появившемся окне задайте значение переменной равное **98** мм.
- 12.Не прерывая команду **Установить значение размера** , последовательно указывайте размеры, соответствующие длинам участков и присваивайте им следующие значения: *l1*=40; *l2*=100; *l3*=84; *l4*=36; *L*=365. После каждого ввода значения переменной контур эскиза будет перестраиваться. Результат построения приведен на рис. 7.
- 13. Добавьте изображение фасок и канавки на эскизе, по размерам которые при-

- 14. Закончите эскиз и с помощью команды **Операция вращения** создайте модель вала (на Панели свойств указать опции *Сфероид* и *Тонкая стенка Hem*).
- 15. Переключитесь на страницу *Вспомогательные построения* Инструментальной панели.
- 16. Вызовите команду Касательная плоскость
- 17. В Дереве построения детали укажите *плоскость ZX*. Затем на модели укажите *цилиндрическую грань*, соответствующую участку вала с радиусом **30 мм**, и в Дереве построения укажите *плоскость ZY*. Нажмите на кнопку *Создать* на Панели свойств.
- 18.В Дереве построения выберите *созданную касатель- ную плоскость*. Нажмите на кнопку **Новый эскиз**
- 19. Постройте эскиз шпоночного паза согласно схеме, приведенной на рис.9.

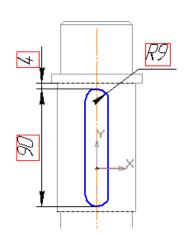


Рис. 9

- **20.** Закончите эскиз и с помощью команды **Вырезать выдавливанием** создайте шпоночный паз. Глубину паза равна 7 мм.
- 21. Сохраните созданную модель вала в файле.

Задание 2. Создать трехмерные модели дистанционной втулки и сквозной торцевой крышки, используя освоенный в предыдущей работе параметрический подход. Ниже приведена схемы, отражающие форму деталей, и таблицы с геометрическими параметрами. В Свойствах деталей задать их наименования и окраску моделей. Детали сохранить в отдельных файлах.

Таблица 1 – Геометрические размеры втулки (рис.10)

Размер, мм							
D1	D2	В					
55	75	20					

Цвет детали – красный. Модель сохранить в файле *Втулка.т3d*.

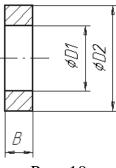


Рис. 10

Таблица 2 – Геометрические размеры сквозной торцевой крышки (рис.11)

	Размер, мм								
D0	D1	D2	D3	D4	В	B1	B2	b	b1
56	120	140	80	90	20	15	8	14	6

Цвет детали – синий.

Модель сохранить в файле *Крышка.m3d*.

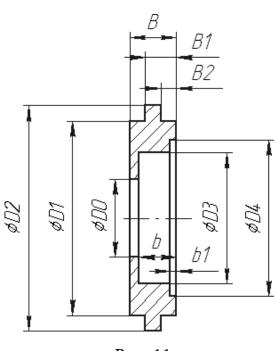


Рис. 11

Работа № 3

Создание модели сборки узла приводной шестерни раздаточного редуктора рабочего рольганга

Задание. Используя созданные в предыдущих работах модели деталей, выполнить модель сборочной единицы — узла приводной шестерни. Создание шпонки выполнить непосредственно в сборке. Подшипники вставить из библиотеки стандартных элементов.

Ход работы

- 1. Откройте файл новой сборки с помощью команды Новая сборка
- 2. Сохраните файл с именем Узел_шестерни.а3d в своей папке.
- 3. На странице Инструментальной панели *Построение сборки* вызовите команду Добавить компонент из файла и вставьте модель вала шестерни. При этом в окне диалога укажите в Вашей папке файл *Вал приводной.m3d* и нажмите на кнопку **Открыть**. Укажите в качестве точки вставки детали <u>начало координат</u> (точка с координатами 0,0,0).
- 4. Укажите курсором плоскую грань шпоночного паза (рис.1).

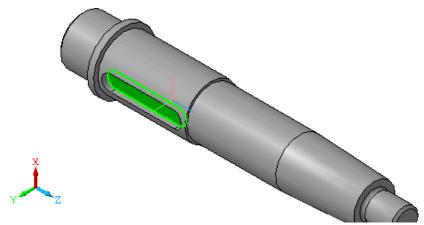


Рис. 1

- 5. На странице Инструментальной панели *Построение сборки* вызовите команду Создать деталь Деталь
- 6. В появившемся окне диалога задайте имя файла для хранения модели создаваемой детали Шпонка.m3d. Нажмите на кнопку Сохранить. Система перейдет в режим редактирования детали на месте (в сборке), режим создания эскиза на выделенной грани (рис. 2).
- 7. На странице Инструментальной панели *Геометрия* вызовите команду

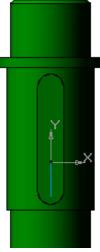
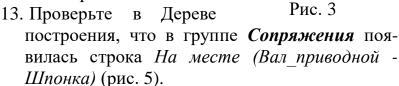



Рис. 2

- Спроецировать объект . Укажите плоскую грань шпоночного паза (должен появится замкнутый контур шпоночного паза) (рис.3).
- 8. Закончите эскиз и с помощью команды Операция давливания выдавите эскиз на расстояние 11 мм в прямом направлении.
- 9. В Дереве построения переименуйте элемент Деталь в Шпонка.
- 10. Установите цвет шпонки желтый.
- 11. Сохраните файл шпонки.
- 12.Отожмите кнопку Редактировать на месте зультат построения шпонки показан на рис. 4.

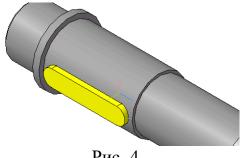


Рис. 4

14. Перейдите на страницу Инструментальной панели

Построение сборки и вызовите команду Добавить компонент файла 별

На месте ((-) Вал приводной-(-) Шпонка) Рис. 5

(-) Манжета 1.1-40х62-1/4 ГОСТ 8752-79

15.В окне диалога укажите в Вашей папке файл *Шестерня.m3d* и нажмите на кнопку Открыть. Точку вставки детали укажите произвольно.

Дерево модели

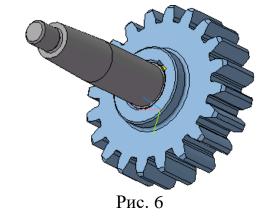
t: E: - B

🛐 Сборка (Тел-0, Компонентов-3)


і 🕝 🕜 (-) Вал приводной

і 🔎 Системы координат

🛨 🚳 (-) Шпонка


🖮 🖰 Компоненты

- 16.Перейдите на страницу Инструментальной панели Сопряжения вите команду Соосность 🥯 . Укажите цилиндрическую поверхность участка вала, на котором должна размещаться шестерня, и поверхность посадочного отверстия шестерни.
- 17. Вызовите команду Совпадение объектов Укажите боковую плоскую грань шпонки и плоскую грань шпоночного паза шестерни.
- 18. Вызовите команду На расстоянии 🚁. Укажите плоскую грань буртика вала и плоскую торцевую грань ступицы шестерни. В строке параметров в поле Расстояние задайте расстояние равное 0. Нажмите на кнопку Создать. Результат установки шестерни показан на рис. 6.
- 19. Перейдите на страницу Инструментальной панели Построение сборки

вызовите команду Добавить компонент из файла .

- 20.В окне диалога укажите в Вашей папке файл *Втулка.т3d* и нажмите на кнопку **Открыть**. Точку вставки детали укажите произвольно.
- 21. Перейдите на страницу Инструментальной панели *Сопряжения* и вызовите команду Соосность . Укажите цилиндрическую поверхность участка вала,

на котором должна размещаться втулка, и цилиндрическую поверхность втулки.

- 22. Вызовите команду **На расстоянии 2**. Укажите торцевую плоскую грань шестерни и плоскую торцевую грань втулки. В строке параметров в поле **Расстояние** задайте расстояние равное **0**. Нажмите на кнопку **Создать**.
- 23.В строке меню выберите пункт *Библиотеки* и вызовите команду Стандартные изделия Вставить элемент.
- 24.В окне диалога в разделе *Подшипники качения* выберите *Подшипник ГОСТ* 8882-75 тип 160000. В списке укажите подшипник с внутренним диаметром **55 мм** и шириной **29 мм**. Нажмите на кнопку **Применить**.
- 25. Разместите подшипник в произвольной точке. Нажмите кнопку **Создать**.
- 26. Закройте окно библиотеки.
- 27. Аналогично пунктам 22 23 установите на валу подшипник.
- 28. Добавьте в сборку еще один такой же подшипник и самостоятельно установите его на валу до упора в буртик (рис.7).

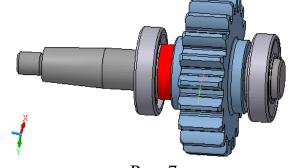


Рис. 7

- 29. Самостоятельно установите на вал торцевую крышку (файл *Крышка.m3d*), а из Библиотеки стандартных изделий *манжету* 1.1-55x80-1/4 Γ OCT 8752-79.
- 30. В дереве построения переименуйте сборку в Узел вала шестерни.
- 31. Сохраните сборку в файле с именем Вал_приводной в сборе.а3d.

Работа № 4

Создание спецификации, связанной с моделью сборочного изделия, в полуавтоматическом режиме

<u>Задание.</u> Составить спецификация на изделие Вал приводной в сборе, связанную с трехмерной моделью сборки, используя полуавтоматический режим заполнения.

Ход работы

- 1. Откройте файл детали *Вал приводной.m3d*.
- 2. В Дереве построения на имени детали щелчком правой кнопки «мыши» вызовите контекстное меню и выберите команду *Свойства*.
- 3. На Панели свойств задайте обозначение изделия АБВГ.00.001. Нажмите *Enter*. Нажмите кнопку **Создать**.
- 4. Сохраните файл.
- 5. Активизируйте Панель инструментов Спецификация

6. Вызовите команду Спецификация – Добавить объект спецификации

- 7. В окне диалога выберите раздел Детали. Нажмите на кнопку Создать.
- 8. Подключите файл детали к строке спецификации (на закладке Документы на Панели свойств, нажмите на кнопку Добавить документ (рис.1).

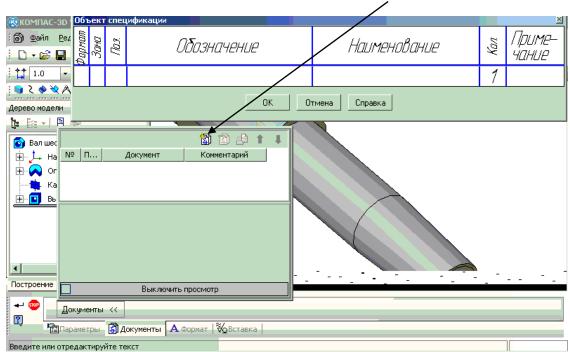


Рис.1

- 9. В окне диалога выберите файл детали *Вал приводной.m3d*.
- 10. Подтвердите чтение данных из файла.
- 11. На экране появится сформированная строка спецификации (рис. 2). Нажмите на кнопку **ОК**. Сохраните файл детали. Закройте файл.

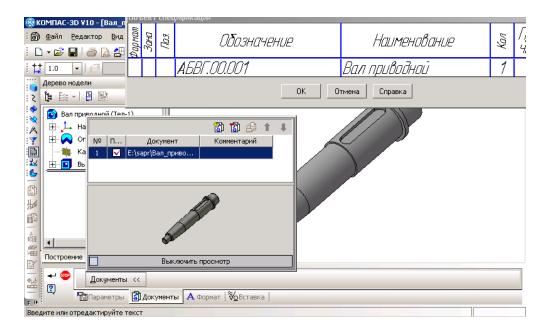
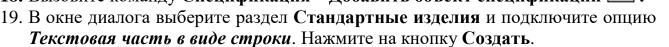
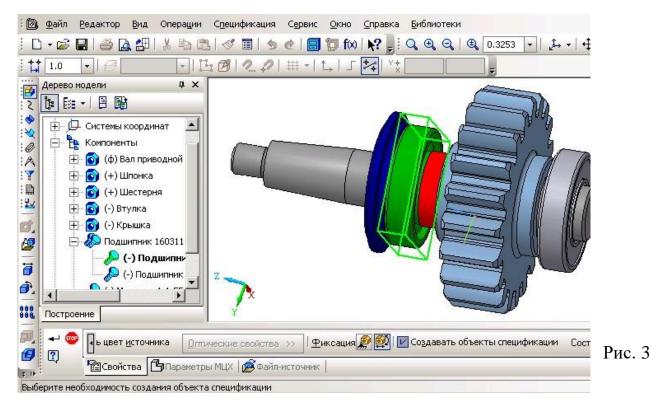




Рис.2

- 12. Повторите действия пунктов 1-11 для всех деталей, входящих в сборку: Шестерня, Втулка, Крышка. При этом обозначения деталей установите следующие: АБВГ.00.002, АБВГ.00.003, АБВГ.00.004.
- 13. Откройте файл детали *Шпонка.m3d*.
- 14. В Дереве построения на имени детали щелчком правой кнопки «мыши» вызовите контекстное меню и выберите команду Свойства.
- 15. На Панели свойств в поле наименование задайте Шпонка 18x11x90 ГОСТ 23360-78 (т.к. шпонка – это стандартное изделие, но ее модель была создана на месте в сборке, а не вставлена из библиотеки). Нажмите *Enter*. Нажмите кнопку Создать.
- 16. Сохраните файл.
- 17. Активизируйте Панель инструментов Спецификация
- 18. Вызовите команду Спецификация Добавить объект спецификации

- 20. На экране появится сформированная строка спецификации. Нажмите на кнопку ОК. Сохраните файл детали. Закройте файл.
- 21. Откройте файл сборки Вал приводной в сборе. а3d.
- 22. В Дереве построения сборки выделите стандартный элемент *Подшипник* и перейдите в режим его редактирования.
- 23. Проверьте на Панели свойств, что опция Создавать объект спецификации включена (рис.3). Нажмите кнопку Создать.

- 24. В Дереве построения на имени сборки щелчком правой кнопки «мыши» вызовите контекстное меню и выберите команду *Свойства*.
- 25. На Панели свойств задайте обозначение изделия АБВГ.00.000. Нажмите *Enter*. Нажмите кнопку **Создать**.
- 26. Сохраните файл.
- 27. Нажмите на кнопку Создать 🗀 и выберите пункт Спецификация.
- 28. Сохраните файл с именем Спец узел вала шестерни.
- 29. Вызовите команду Управление сборкой
- 30. В появившемся окне нажмите на кнопку Добавить документ (рис.4) и в окне диалога выберите файл сборки.

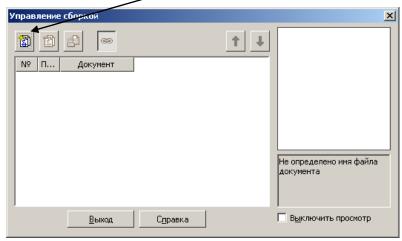


Рис.4

31. Подключите опции **Заполнить основную надпись** и **Передавать изменения в документ** (рис.5). Нажмите кнопку **Выхо**д.

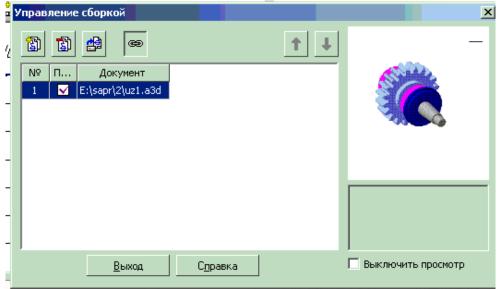


Рис. 5

32. В спецификации появятся заполненные разделы *Детали* и *Стандартные из- делия* (рис. 6).

N2	Ŀ	ı		<u> </u>	F		
<u> </u>	шанаа	John	/Jac	Обазначение	Наименавание	Κοτ	Приме- чание
A ≦					<u> Детали</u>		
	Г	П			<u>aemanu</u>		
		П	1	A 581 .00 .001	Вал приваднай	1	
			2	A 58F.00.002	Шестерня	1	
题	L		3	A 58F.00.003	Втулка	1	
抽	L	Ц	4	A 581 .00 .004	Крышка	1	
	L	Ц					
	L	Ц					
Y	L	Ц					
- 1	L	Ц			<u>Стондартные изделия</u>		
	L	Ц	_		li Her on the corr open po	4	
; H	L	Ц			·		
6B	L	Ц					
kor	L	Ц	9		Waanka 18k11k90 FOCT 23360-78	1	
₩ ¾ ₩ . H . 週 5			7 8 9		Стондартные изделия Новето 11-55 жво 1 / 4 ГВСТ 8752-79 Подишания 160311 ГВСТ 8882-75 Шпанка 18к 11х 90 ГВСТ 23360-78	1 2 1	

Рис.6

- 33. В спецификации вызовите команду Добавить раздел
- 34. Выберите в окне диалога раздел Документация. Нажмите кнопку Создать. В спецификации появится раздел Документация.
- 35. На Панели свойств перейдите на закладку Документы.
- 36. Разверните список и нажмите на кнопку Добавить документ.
- 37. В окне диалога выберите файл сборки. Нажмите кнопку Открыть.
- 38. Нажмите на кнопку Да при ответе на вопрос системы.
- 39. Включите опцию *Передавать изменения в документ*. Нажмите на кнопку **Создать**. В спецификации появится заполненный раздел **Документация** (рис.6).
- 40. Вызовите строку раздела на редактирование двойным щелчком «мыши» в графе **Обозначения**.

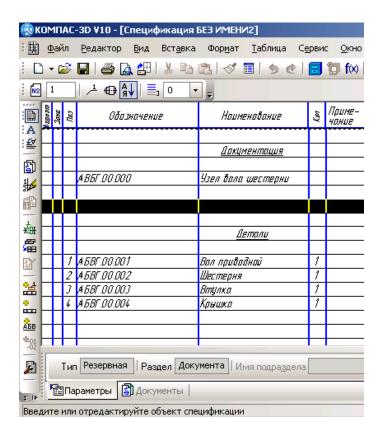
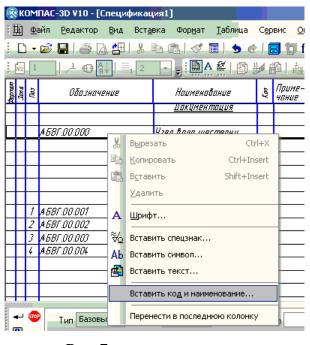



Рис.6.

41. Нажмите правую кнопку «мыши» и выберите команду **Вставить код и на-именование** ... (рис.7).

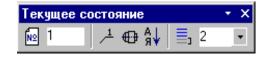


Рис.7 Рис.8

- 42. В окне диалога в разделе **Чертежи** выберите *Сборочный чертеж*, нажмите на кнопку **ОК**. На Панели свойств нажмите на кнопку **Создать**.
- 43. На панели инструментов Спецификация нажмите на кнопку Расставить позиции . При этом стандартные изделия будут начинаться с позиции 7.

- 44. Установите курсор на любую строку раздела **Детали** и на панели Текущее состояние выставите *количество резервных строк* равным **0** (рис.8).
- 45. Снова вызовите команду **Расставить позиции** , стандартные изделия будут начинаться с позиции **5**.
- 46. Нажмите на кнопку **Разметка страницы** чтобы посмотреть на документ спецификации (рис.9). Самостоятельно заполните необходимые графы основной надписи.
- 47. Сохраните файл спецификации.

	Фортат	Зана	/lb3	l	О б озні	AHEHL	IP	Наименова	HUE.	Кол	Приме чание
д примен	8							<u>Документа</u>	<u>ЦИЯ</u>		
Nep				A B57.00	1.000 i	СБ		Сборочный черт.	7 <i>EX</i>		
								Детали	Ĭ.		
npag. Nº	8		1	<i>A581.00</i>	ากกา			Вал приводной		1	
S	-	Н	2	A581.00				<i>Шестерня</i>		1	
	8		3	A5B1.00				Втулка	· ·	1	
			4	A 581.00				Крышка		1	
	8-							Стандартные и	<u>изделия</u>		
ша			5	8				Манжета 1.1-55 х80-1 / 4 .	TOCT 8752-79	1	
и дата			6					Подшипник 160311 ГО		15	
Nodn	*		7					Шпонка 18х11х90 ГОС	T 23360-78	1	
MHG Nº GLIĞT									3	100 0	
UNB No M											
Взан и											
и дата			4								
Nodn	Изи	/lui	-m	№ доким.	Падп.	Лата		АВБГ.ОС	7.000		×.
5 Nº noda	Ра. При	300Å	1	ar uukur.	HUUH.	дини	Узел в	ала шестерні	Num.	Лист	Aucma 1
Z	л.к Ут	<u>जागा।</u> भ	ш	×							

Рис. 9